Thermochemical effects on the formation of Ca₃SiO₅

Ca₃SiO₅, the principal cementing phase in ordinary Portland cement, starts forming at about 1280° C during the formation of Portland cement clinker [1]. The reaction occurs in two stages, i.e.,

$$2 \text{ CaO} + \text{SiO}_2 \rightarrow \text{Ca}_2 \text{SiO}_4$$

 $\text{Ca}_2 \text{SiO}_4 + \text{CaO} \rightarrow \text{Ca}_3 \text{SiO}_5$

The kinetics of formation and the stability of this phase depend on a number of parameters [2-6]. Similar to our earlier work on Ca_2SiO_4 [7], the present communication is based on further study of the synthesis of Ca_3SiO_5 using thermochemical methods.

The chemical doping agents used in this investigation were CaF_2 , NaF, $CaHPO_4$, CrO_3 , $CaSO_4 \cdot 2H_2O$, $CaF_2 + CaHPO_4$ (1:1) and $CaF_2 + CaHPO_4 + CaSO_4 \cdot 2H_2O + CrO_3$ (1:0.5:0.5). About 2% of each of these chemicals was used. A mix of 5 g containing finely ground silica gel (passing 40 μ m and major fraction was estimated to pass $20 \, \mu$ m — milled in a jar mill) and $CaCO_3$ in the ratio 1:3 was made for each firing. Necessary corrections were made for the presence

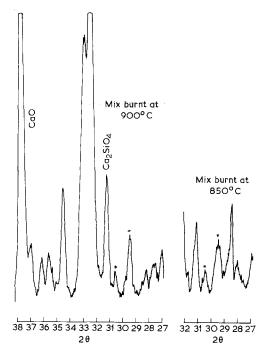


Figure 1 XRD traces of mix containing CaF_2 fired at a lower temperature. The marked lines are due to Ca_3SiO_5 .

2739

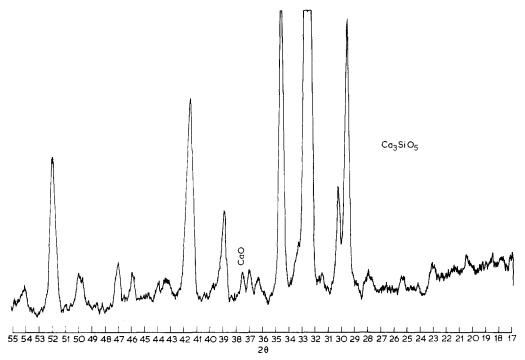


Figure 2 An XRD trace of a refired mix containing CaF₂; firing temperature 1400° C and retention time 2 h. © 1978 Chapman and Hall Ltd. Printed in Great Britain.

TABLE I Formation of silicate phases at different temperatures using mineralizers (2%)

$F^- + PO_4^{3-} + SO_4^{2-} + CrO_3$	Free lime	High	Moder- ately low	Low
	C ₂ S Free lime	Fzir	Weak 1	
	S ^E O	Weak		Good
			ğ	
CrO_3 $F^- + PO_4^{3-}$	Free	High	Moder- Good ately low	Low
	C ₃ S C ₂ S	Fair	High Good Weak	Good Very weak
	C ₃ S	Weak Fair	Good	Good
	Free	High	High High	High
	C ₂ S Free lime	Weak	Weak Weak	Weak
	C ₃ S	Weak	Fair Very fair	Weak
		ı	Very high Very high	Very high
CaHPO₄	C_2S Free C_3S C_2S Free lime	I	Weak Weak	Weak
	C ₃ S		High (Weak Good	High Good
CaSO₄ · 2H₂O	Free lime	High	High (High
	C_2S	Fair	Fair	Fair
CaSO ₄	C ₃ S	Weak	Weak	Weak
NaF	Free lime	Good Very High weak	Very Moder- weak ately low	Good Very Moder- weak ately low
	C ₂ S	Very weak	Very weak	Very veak
	C ₃ S C ₂ S Free lime	Good	Very good	Good
	# ≥	Low	Low	Very low
	C2 S*	Good Weak Low	Weak	Weak
CaF_2	C³S*	Good	Very	Very
Temper- CaF_2 ature of G_3S^* G_2S^* F_{Γ} heating (° C)		1200	$1300 \\ 1350 \\ \bigg\}$	1400

 $^*C_3S = C_3SiO_5$; $C_2S = C_2SiO_4$. The relative data obtained from XRD traces.

of calcium in the doping agent. Pellets were made of the mix containing the doping agent at a load of 5000 kg. The pellets were introduced directly into a quench furnace in a Pt crucible at a temperature ranging from 800 to 1400° C. The retention time was normally one hour. The samples were airquenched.

A semi-quantitative estimation of the mineral phases, Ca₃SiO₅ (29.54, 30.2, 36.90), Ca₂SiO₄ (31.1, 39.48 and 44.90) and CaO (37.36 and $56.86 - 2\theta$ values) were undertaken on the basis of the intensity of the X-ray diffraction (XRD) lines (Philips, $CuK\alpha$) characteristic of the phases. Chemical analysis, microscopic analysis and differential thermal analysis (DTA) of some samples were carried out. Table I gives the qualitative information on the formation of the mineral phases at 1200, 1300 (1350) and 1400°C. Although some formation of Ca₃SiO₅ at a temperature as low as 850° C (retention time of 2 h) was observed (Fig. 1), with the fluoride doping agents sizeable amounts of Ca₃SiO₅ formed at about 1300° C. The formation of Ca₃SiO₅ with other mineralizers was poor even at 1400° C. The decomposition of CaCO₃ in the presence of the mineralizers was studied by DTA. The temperature of decomposition was lowered in the case of NaF (765° C) and CaF₂ (865° C) compared to pure CaCO₃ (885° C). The effectiveness of these agents in the formation of Ca₃SiO₅ are given in the following (decreasing effectiveness) order:

$$\begin{aligned} \text{CaF}_2\,,\,\text{NaF},\,\text{CaF}_2\,+\,\text{CaHPO}_4\,+\,\text{CaSO}_4\,\cdot\,2\text{H}_2\,\text{O} \\ &+\,\text{CrO}_3\,,\,\text{CaF}_2\,+\,\text{CaHPO}_4\,,\,\text{CaHPO}_4\,,\,\text{CrO}_3 \\ &\text{and}\,\,\text{CaSO}_4\,\cdot\,2\text{H}_2\,\text{O}. \end{aligned}$$

The percentages of free lime were found to be 3.94 (1300° C), 2.13 (1350° C) and 2.32 (1400° C) in samples fired with CaF_2 . Certain XRD lines at 31.6, 33.3 and 43.5 (2θ) appeared in the diffractogram of the sample, containing CaF_2 , which, however, disappeared or became weak on refiring (Fig. 2). It appears that these lines are due to Ca_2SiO_4 although they are slightly shifted.

The kinetics of formation and the stability of the $\text{Ca}_3 \, \text{SiO}_5$ phase is enhanced by fluorides and sudden heating to sintering temperature, leading to a high yield of this phase in a single firing. The temperature of initiation of the reaction for the formation of this phase has been lowered considerably.

References

- F. M. LEA, "The Chemistry of Cement and Concrete" (Edward Arnold, London, 1970).
- Yu. M. BUTT and V. V. TIMASHEV, Chemistry of Cement Congress (Moscow, 1974).
- T. HAHN, W. EYSEL and E. WOERMANN, Proceedings, Chemistry of Cement, Vol. 1 Part 1 (1968) p.61.
- 4. W. GUTT, ibid. p. 93.
- 5. K. MOHAN and F. P. C. GLASSER, Cement Concrete Res. 7 (1977) 373.
- B. V. VOLKINSKY, S. D. MAKASHEV and N. P. SHTEJERT, Tsement 74 (1974) 17.
- S. N. GHOSH, A. K. PAUL and A. K. THAKUR, J. Mater. Sci. 13 (1978) 1602.

Received 15 March and accepted 3 May 1978.

S. N. GHOSH Cement Research Institure of India, M-10, NDSE-11, New Delhi 1100 049, India